
CS106B
Spring 2012

Handout #26
June 4, 2012

Assignment 7: Pathfinder

Assignment by Julie Zelenski and Eric Roberts

Have you ever wondered how MapQuest and Google Maps or those tiny little GPS units work their
magic? Get ready to find out. In this final CS106B challenge, you will create the Pathfinder
application, which (in addition to other useful functions) finds and displays the shortest path between
two locations on a map. The Pathfinder assignment is designed to accomplish the following objectives:

• To give you practice working with graphs and graph algorithms.
• To offer you the chance to design and write a class of your own.
• To let you practice using callback functions in an application.

Due Tuesday, June 12 at 11:30 AM.
No Late Submissions will be Accepted.

You cannot use late days on this assignment. This assignment is due during the time in which we'd
normally have the final exam, and university policy prevents us from having assignments due at any
point after that.

The Pathfinder application from the user’s perspective

The Pathfinder application begins by asking the user to specify a filename containing data for a map
consisting of a background image and a graph linking locations in the map. The application then
displays the graph in the graphics window. For example, if the user asks for the map USA.txt,
Pathfinder will create the display shown in Figure 1.

- 1 -

Figure 1. Pathfinder after reading in the USA.txt data file

User interaction in the Pathfinder program is controlled by the buttons in the control strip at the bottom
of the window. The Map button, for example, allows the user to enter the name of some other map,
which it then loads into the window, replacing the existing one. The Dijkstra button executes Edsgar
Dijkstra’s algorithm for finding the shortest path between two nodes in the graph, as described in
section 19.6 of the reader. For example, if the user selects Dijkstra and then clicks on the city circles for
Portland and Atlanta, the Pathfinder application will highlight the shortest path between those cities, as
shown in Figure 2. The Kruskal button executes an algorithm by Joseph Kruskal—described later in
this handout—that finds the lowest-cost cycle-free subgraph connecting all the nodes. Clicking the Quit

button exits from the program.

The program from an implementer’s perspective

The Pathfinder application is a substantial piece of code comprising seven files, if you count both
headers and implementations. The good news is that you will need to change four of those files:
pathfinder.cpp, graphtypes.h, path.h, and path.cpp. You will, however, need to use the rest of
the files and must therefore understand their public interfaces, even if you can ignore the
implementations for the most part. You also need to use some additional interfaces from the Stanford
library, such as the pqueue.h interface that implements priority queues and the GPoint class from the
gtypes.h interface. The complete list of files appears in Figure 3 on the next page, which offers an
overview of how the individual pieces of the project fit together.

- 2 -

Figure 2. Result of applying Dijkstra’s algorithm to connect Portland and Atlanta

Figure 3. Files in the Pathfinder application

pathfinder.cpp This file is the main program for the Pathfinder application. Most of your
work in this assignment comes from adding code to this file; the version of
pathfinder.cpp in the starter folder simply initializes the graphics library
and puts the Quit button on the screen so that you have one example of how
to use buttons. You have to write everything else. Your implementation
of Dijkstra’s and Kruskal’s algorithms will appear here, along with the
code for reading the graph data from the file and for responding to the
other buttons.

path.h
path.cpp

In the finished Pathfinder project, these files will define the interface and
implementation of a Path class that represents a multistep path in a graph.
As they appear in the starter project, however, these files are almost
entirely empty, which means that you are responsible for both the design
and the implementation of the class. This part of the assignment is
described in the discussion of Phase 6 (which covers designing the Path
class) on page 11.

graphtypes.h This file is simply the structure-based graph interface that appears in
Figure 19-3 on page 802 of the reader. You won’t need to use the
SimpleGraph type, because Pathfinder uses the object-based Graph class
instead. You may need to add fields to the Node and Arc structure types to
keep track of the additional data the Pathfinder application needs.

gpathfinder.h
gpathfinder.cpp
gpathfinderimpl.cpp

These files provide a library of graphical functions for the Pathfinder
assignment. This interface includes all the calls that you need to make in
implementing Pathfinder, so there is no reason—unless, of course, you are
extending the assignment to add new features—that you would need to use
the graphics.h or extgraph.h interfaces. As is typical in commercial
projects, however, we have provided very little documentation of the
Pathfinder graphics package in this handout. To find out what’s available,
you need to read the gpathfinder.h interface and use the comments to
figure out what you need to know.

With Pathfinder—as with any large project—the most important advice we can offer is to subdivide the
project into phases so that you can implement and test each phase independently. In general, if you
write the code for Pathfinder all at once and then try to get it working, the complexity of the project
will almost certainly make your life difficult as you debug your code. On the other hand, if you take
the time to test each piece of your code as you write it, the assignment will go much more smoothly.

We recommend that you implement Pathfinder in the following phases:

1. Determine what extensions you need to make in the graph data structures.

2. Write the code to read map data from a file into its internal representation as a graph.

3. Use the facilities from gpathfinder.h to display the map on the screen.

4. Add buttons to the control strip, making sure that they call the appropriate functions.

5. Reimplement Dijkstra’s algorithm so it fits into the Pathfinder application.

6. Design and implement the Path class and integrate it into the Dijkstra code.

7. Implement Kruskal’s algorithm for finding minimum spanning trees.

The sections that follow describe each of these phases in turn.

- 3 -

Phase 1: Determine what extensions you need to make in the graph data structures

The Stanford C++ libraries include a graph.h interface that exports a parameterized Graph class that
takes the node and arc types as template parameters. The graphtypes.h interface in the starter folder
defines two structure types—Node and Arc—that define the minimal structures required to represent
any graph. As supplied, these structures contain no information specific to Pathfinder. Depending on
the design of your code—and also on what extensions you choose to implement—these types will need
to include additional information. If nothing else, you won’t be able to display the nodes on the
graphics window unless you know the coordinates at which that node appears, which means that this
information needs to be part of the data structure. You therefore need to change the graphtypes.h
interface so that the structure types contain whatever information your application needs.

Beyond the additional data required for nodes and arcs, it is also likely that you will want to associate
additional information with the graph as a whole. Because the Graph class is precompiled as part of
the Stanford libraries, you can’t change its definition. The good news, however, is that you can extend
the behavior of Graph by defining a subclass that adds any additional data you need. Defining a Graph
subclass has the further advantage of allowing you to incorporate the template parameters as part of the
base type. If you don’t define a new class, everywhere you need to use a graph, you have to include
the type parameters, as in Graph<Node,Arc>. If, however, you create a new class with the header line

class PathfinderGraph : public Graph<Node,Arc>

you no longer need to specify the template parameters when you are working with the
PathfinderGraph class.

Your mission in Phase 1 is to read through the assignment, figure out what additional information you
need to maintain at each level of the graph structure, and then make the necessary extensions to
graphtypes.h and your new PathfinderGraph subclass to incorporate that information into the data
structure.

Phase 2: Read map data from a file into its internal representation

The next step is to write the code necessary to read the information defining a Pathfinder graph from a
data file. The starter folder includes four data files: USA.txt, Small.txt, Stanford.txt, and
MiddleEarth.txt. Figure 4, for example, shows the contents of the Small.txt data file, along with a
few explanatory notes. With only four nodes and six arcs, this file is ideal for testing.

Figure 4. The contents of the Small.txt data file

USA.jpg Name of image file to display background picture
NODES Marks the beginning of list of nodes
WashingtonDC 536 176 Each city is a one-word name with x-y coordinates
Minneapolis 349 100
SanFrancisco 26 170
Dallas 310 296
ARCS Marks beginning of list of arcs
Minneapolis SanFrancisco 1777 Each arc specifies two nodes and a distance
Minneapolis Dallas 935 Note that each arc is a bidirectional connection
Minneapolis WashingtonDC 1600
SanFrancisco WashingtonDC 2200
Dallas SanFrancisco 1540
Dallas WashingtonDC 1319

- 4 -

Each of the data files shares a common data format. The first line is the name of a file containing the
background image. The next line consists of the word NODES, which indicates the beginning of the
node entries. The nodes are listed one per line, each with a name and the x and y coordinates of the
node, with each of the fields separated by spaces. The line ARCS indicates the end of the node entries
and beginning of the arc entries. Each arc identifies the two endpoints by name and gives the distance
between the two. The end of the ARCS section is simply the end of the file.

Reading the Pathfinder data files is similar to reading the various other data files you’ve used this
quarter. In general, the simplest approach is to read each line from the file using getline and then use
a scanner to interpret the information on each line. As you go through the file, you also have to make
the appropriate calls to addNode and addArc methods in the Graph class to create the appropriate data
structure.

As you create the graph structure, one point to keep in mind is that the arcs in the data file are
bidirectional, in the sense that each arc indicates a connection both from the first node to the second
and from the second node back to the first. Because the Graph class itself assumes that arcs run in one
direction, you will need to add two arcs for each line in the data file: one from the first node to the
second and one in the opposite direction.

Given that Phase 2 comes before you have any means of displaying the graph on the screen, you won’t
be able to test it easily unless you write additional code to display the graph. That code is not required
in the final assignment, but it is good practice to leave this kind of code in place so you can use it again
if, for example, you need to change Pathfinder to work with a different file format.

Phase 3: Display the map on the screen

In Phase 3, your mission is to write whatever code is necessary to take a graph of the sort you’ve
created in Phase 2 and display it on the screen. For example, assuming that you have read the graph
data from the file USA.txt, there needs to be some function you can call that will produce the output
shown back in Figure 1 on the first page of this handout. Such a function, however, is not sufficient in
and of itself. At some point, you will need to be able to highlight individual nodes and arcs by drawing
them in a different color, as shown in Figure 2. If you think about what drawing capabilities you are
going to need and design this part of the assignment so that those capabilities are easy to achieve, you
will have an easier time implementing the algorithms in the later phases of this assignment.

You are not, however, entirely on your own for Phase 3. We haven’t made that much use of the
graphics.h interface in CS 106B, and it wouldn’t be fair to force you to figure out all the graphical
facilities on your own. To make this assignment manageable, we’ve given you a gpathfinder.h
interface that includes quite a few useful methods for implementing the graphical parts of this
assignment. At least for the parts of this assignment before you start adding extensions, everything you
need is available in gpathfinder.h, and you won’t need to work with the graphics.h interface at all.
In contrast to earlier assignments, however, we are not going to describe in detail what functions are
available in gpathfinder.h. You need to look at the interface for that. In today’s software
development environment, programmers are always building on top of existing facilities whose
structure they have to figure out on their own. To help you with that process, gpathfinder.h includes
extensive comments, but you need to learn how to use it by looking at those comments and prototypes.

- 5 -

Phase 4: Add buttons to the control strip

For the last couple of decades, the Pathfinder application has used a text-based menu to determine what
operation it should execute. That style of user interface dates from the 1970s and seems entirely out of
place nearly forty years later. As you can see from the screenshots in Figures 1 and 2, the new
Pathfinder has buttons, which at least drags it some distance into the modern world.

Although producing an application that seems a little less dated is useful in itself, the decision to
incorporate buttons into this quarter’s Pathfinder assignment has an additional advantage. In modern
user interfaces, mouse clicks, button activation, and other similar user-generated activities represent
actions that can occur at times not of the programmer’s choosing. Such actions are collectively called
events. Programs respond to those events by designating some function that should be called whenever
that event occurs. The program as a whole typically does nothing except wait for events and then call
the appropriate function.

Event-driven programs of this sort depend on the idea of function pointers (sometimes, as in Java,
embedded in classes as dynamically bound methods but nonetheless implemented using function
pointers) to trigger the action. The programmer begins by providing the event manager with a pointer
to a function that must be called whenever a particular event occurs. At some later time, when the user
performs an action that triggers the event, the event manager then uses that function pointer to trigger
the appropriate action.

A simple form of this mechanism is illustrated by the contents of the pathfinder.cpp file in the
starter folder. The main program in the starter file

int main() {
 initPathfinderGraphics();
 addButton("Quit", quitAction);
 pathfinderEventLoop();
 return 0;
}

where quitAction is defined as

void quitAction() {
 exit(0);
}

In this code, the call

addButton("Quit", quitAction);

creates a new button in the control strip and gives it the label Quit. More importantly, the call also
registers the function quitAction as the function to be invoked whenever the user activates the Quit

button. The pathfinderEventLoop function simply watches the mouse and waits for the user to click
on one of the buttons. When the user selects a button, pathfinderEventLoop has to invoke the
associated function. In the case of the Quit button, that function is quitAction, which invokes the
standard exit function to terminate the application.

The addButton and pathfinderEventLoop functions are part of the gpathfinder module and have
no knowledge of functions like quitAction that live in the main program. The implementations of
addButton and quitAction lie on opposite sides of the abstraction barrier that the gpathfinder.h
interface is designed to create. The function is provided by the main program and passed in pointer
form across the abstraction barrier as a parameter to the addButton function. At some later time, the
implementation of pathfinderEventLoop has to retrieve the function pointer and make a call back

- 6 -

across the abstraction barrier to the function defined in the main program. As noted in Chapter 11,
functions that are transmitted across an abstraction barrier and then invoked across that same barrier in
the opposite direction are called callback functions.

This simple model, however, is not sufficient to implement the other buttons you need for the
Pathfinder application. The quitAction function, after all, is extremely simple and requires no
information from the application. The functions that implement the other buttons, however, must have
access to the graph representing the current map. The crux of the problem is therefore how to share
information between the main program and the callback function triggered by an event.

One possible strategy—and indeed one that ends up being used in far too many user-interface packages
—is to share information in global variables. This strategy, however, is a poor choice, because global
variables can be manipulated in any part of the program. Such sharing is far too general. What we
want instead is a mechanism that shares a data structure only between the cooperating parties: the main
program that defines the button and the callback function invoked by pathfinderEventLoop. To
accomplish this objective, the usual approach is to give the callback function an argument and pass this
argument in both directions as a reference parameter.

The definition of addButton in gpathfinder.h implements this strategy by allowing an optional third
argument that represents the data structure you want to share. The callback function must also then
take an argument of that same type. When the user clicks on the button, the callback function receives
this information and can therefore communicate with the main program without using global variables.

To illustrate this idea, suppose that your graph data structure is stored in a variable named g whose type
is the extended PathfinderGraph class described in the description of Phase 1. You could then create
a Clear button (not required for this assignment) by adding the line

addButton("Clear", clearAction, g);

to the main program. You could then define clearAction like this:

void clearAction(PathfinderGraph & g) {
 g.clear();
 drawPathfinderMap("");
 repaintPathfinderDisplay();
}

Note that the parameter g is passed by reference, so the call to clear actually clears the graph defined
in the main program, and not some temporary copy of it.

The creation of the buttons on the screen requires just a few lines of code. The harder part is writing
the callback functions. At this point, you don’t yet have enough of the assignment in place to
implement the Dijkstra and Kruskal buttons, but you can put them on the screen and assign them to
functions whose bodies you will flesh out later. As part of Phase 4, however, you can (and indeed
should) get the Map button working by having its callback function invoke the code you wrote in
Phases 2 and 3.

- 7 -

Phase 5: Reimplement Dijkstra’s algorithm so it fits the Pathfinder application

Figure 19-8 on page 823 of the reader has a complete implementation of Dijkstra’s algorithm for
finding the shortest path between two nodes. Your task in Phase 5 is simply to adapt that
implementation so that it fits your data structure.

Copying the code for findShortestPath is not your primary task in Phase 5. The more challenging
part is integrating the code into the application. When you click the Dijkstra button in the user interface,
the program should ask the user to click on two nodes on the graph. These nodes then serve as the
start and finish arguments to findShortestPath. More challenging still is the problem of
highlighting the path after findShortestPath returns.

Phase 6: Design and implement the Path class and integrate it into the Dijkstra code

The code for Dijkstra’s algorithm embodied in the findShortestPath function has some notable
inefficiencies. One of these is that calculating the total distance along a path requires adding up the
individual distances (or costs, in the language of the graph abstraction) of each of the arcs along the
way. Because this operation must be performed several times for each path as it evolves, looping over
the arcs in a path generates redundant computation that could easily be eliminated. Unfortunately, as
long as the path is represented as a Vector instead of as a separate class of its own, there is no obvious
place to store the total distance alongside the list of arcs.

In Phase 6 of the assignment, your goal is to replace the Vector<Arc *> used to store the path with a
new Path class that you define in path.h and then implement in path.cpp. The versions of these files
in the starter project are essentially empty. We don’t tell you what methods the Path class must export
or what instance variables must be in its private section. We do require that your class meet the
following conditions:

1. The class must not export any public instance variables. All data required to store the path must be
private to the class.

2. The method that returns the total cost of the path must run in constant time.

3. The class must export a toString method that returns a string composed of the nodes on the path
separated by arrows formed by the two-character sequence ->.

4. Any heap storage allocated by this class must be freed when the object is deleted.

Beyond those restrictions, you are free to design and implement this class as you see fit.

There is, however, one more requirement. Whenever you design a class, there are many different
choices you could make in terms of what methods to export, what types to use, how flexible you want
the interface to be, and so forth. Typically, each choice has advantages and disadvantages, so that the
interface designer must evaluate the tradeoffs among the different possibilities. All too often, those
design decisions are not reflected in the code, which means that future developers have to rediscover
the underlying logic all over again. Thus, as the comments in the starter files make clear, one of the
requirements of this assignment is that you include comments in the path.cpp file describing why you
made the choices you did in your design of the Path class. This comment will be treated as an essay
and will count for 25% of the style grade on the Pathfinder assignment.

- 8 -

Phase 7: Implement Kruskal’s algorithm for finding minimum spanning trees

Your final task in the Pathfinder assignment is to implement another graph classic: Kruskal’s algorithm
for constructing a minimum spanning tree that connects the nodes in a graph at minimal cost. For
example, if you invoke Kruskal’s algorithm on the graph from the USA.dat file, you get the result
shown in Figure 5 at the top of the next page.
Although a description of Kruskal’s algorithm appears in the reader starting on page 836, it seems
worth repeating that discussion here so that you have all the information in one place.

In many situations, a minimum-cost path between two specific nodes is not as important as minimizing
the cost of a network as a whole. As an example, suppose your company is building a new cable
system that connects 10 large cities in the San Francisco Bay Area. Your preliminary research has
provided you with cost estimates for laying new cable lines along a variety of possible routes. Those
routes and their associated costs are shown in the graph on the left of Figure 6. Your job is to find the
cheapest way to lay new cables so that all the cities are connected through some path.

- 9 -

Figure 5. Result of applying Kruskal’s algorithm to generate a minimum spanning tree

Figure 6. A graph and its minimum spanning tree

To minimize the cost, one of the things you need to avoid is laying a cable that forms a cycle. Such a
cable would be unnecessary, because some other path already links those cities, and thus you might as
well leave such arcs out. The remaining graph forms a structure that is in some ways like a tree, even
though it lacks a root node. Most importantly, the graph you’re left with after eliminating the redundant
arcs is tree-like in that it has no cycles. For historical reasons, this reduced graph that links all the
nodes from the original one is called a spanning tree. The spanning tree in which the total cost
associated with the arcs is as small as possible is called a minimum spanning tree. The cable-network
problem is therefore equivalent to finding the minimum spanning tree of the graph, which is shown in
the right side of Figure 6.

There are many algorithms in the literature for finding a minimum spanning tree. Of these, one of the
simplest was devised by Joseph Kruskal in 1956. In Kruskal’s algorithm, you consider the arcs in the
graph in order of increasing cost. If the nodes at the endpoints of the arc are unconnected, then you
include this arc as part of the spanning tree. If, however, the nodes are already connected by some
path, you can discard this arc. The steps in the construction of the minimum spanning tree for the
graph are shown in Figure 7, which was generated by a program that traces the operation of the
algorithm.

- 10 -

Figure 7. Steps in the construction of the minimum spanning tree

Process edges in order of cost:
10: Berkeley -> Oakland
11: San Jose -> Sunnyvale
13: Fremont -> Sunnyvale
14: Fremont -> San Jose (not needed)
15: Palo Alto -> Sunnyvale
17: Fremont -> Hayward
18: Hayward -> Oakland
19: San Francisco -> San Rafael
21: Fremont -> Palo Alto (not needed)
22: Berkeley -> Vallejo
23: Oakland -> San Francisco
25: Palo Alto -> San Francisco (not needed)
28: San Rafael -> Vallejo (not needed)
30: Berkeley -> San Rafael (not needed)

Kruskal’s is another example of a greedy algorithm. Since the goal is to minimize the total distance, it
makes sense to consider shorter arcs before the longer ones. To process the arcs in order of increasing
distance, the priority queue will come in handy again.

The tricky part of this algorithm is determining whether a given arc should be included. The strategy
you will use is based on tracking connected sets. For each node, maintain the set of the nodes that are
connected to it. At the start, each node is connected only to itself. When a new arc is added, you
merge the sets of the two endpoints into one larger combined set that both nodes are now connected to.
When considering an arc, if its two endpoints already belong to the same connected set, there is no
point in adding that arc and thus you skip it. You continue considering arcs and merging connected
sets until all nodes are joined into one set. The perfect data structure for tracking the connected sets is
the Set class, since it has the handy high-level operations (such as the union operation implemented as
the + operator) that are exactly what you need here.

General hints and suggestions

• Check out the demo. Run our provided demo to learn how the program should operate.

• Take care with your data structures. Plan what data you need, where to store it, and how to access
it. Think through the work to come and make sure your data structure adequately supports all your
needs. Be sure you thoroughly understand the classes that you are using. Ask questions if anything
is unclear.

• Careful planning aids reuse. This program has a lot of opportunity for unification and code reuse,
but it requires some careful up-front planning. You’ll find it much easier to do it right the first time
than to go back and try to unify it after the fact. Sketch out your basic attack before writing any
code and look for potential code-reuse opportunities in advance so you can design your functions to
be all-purpose from the beginning.

• Test on smaller data first. There is a Small.txt data file with just four nodes that is helpful for
early testing. The larger USA.txt, Stanford.txt, and MiddleEarth.txt data files are good for
stress-testing once you have the basics in place.

Extension ideas

If you’ve completed a beautiful, elegant solution with time and energy to spare, there are many other
graph explorations you could dive into, such as:

• Implement the node and arc structure using classes instead of structures. The hybrid design of the
Graph class makes it possible to use Node and Arc classes instead of lower-level structures, as long
as they export public instance variables with the appropriate names. In fact, if you simply replace
the Node and Arc definitions in graphtypes.h with essentially identical versions of Node and Arc
classes that export the same public fields, the program should continue to work as before. The
advantage, however, of using classes here is that you can then define methods associated with nodes
and arcs and then redesign the application to operate in a more object-oriented style.

• Allow the user to find the shortest path according to different criteria. If you wanted to fly from
Portland to Atlanta, it would be tedious to take the minimum distance route shown in Figure 2,
because that route requires you to take five different planes. The two-step route to Seattle and then
directly to Atlanta is slightly longer in terms of distance, but likely to be shorter in terms of overall
travel time. Extend the algorithm to allow the user to choose the number of segments (and possibly
other criteria) to choose the optimal path.

- 11 -

• Let the user trigger Dijkstra’s algorithm by clicking on two nodes. It’s somewhat inconvenient to
have to click the Dijkstra button before clicking on the nodes. Use the defineClickListener
method in gpathfinder.h to implement a shortcut form in which the user simply clicks on the two
nodes. The sample application includes this extension.

• Employ A*. Dijkstra’s algorithm is guaranteed to find the shortest path, but it can do unnecessary
searching in what will prove to be the wrong direction if there are many short paths that lead away
from the goal. One way to avoid this is to guide the search in the right direction by adding what
computer scientists call a heuristic, which is a strategy that is likely to generate a better solution,
although that outcome is not guaranteed. A heuristic is a “rule of thumb” that aids in the solution of
a problem by employing domain-specific knowledge. You can change the shortest-path algorithm to
include such domain-specific knowledge simply by changing how priorities are calculated. Instead
of considering only the length of the path, add in an estimate of how close that path gets you to the
goal. One good estimate is the straight-line distance from the end of the path to the goal. In
Pathfinder, our understanding of the physical world tells us that Cartesian distance between two
points is a good estimate of proximity (at least until distances get large enough that the distortions of
actually being on the surface of a sphere become relevant). The search algorithm using this heuristic
is an example of a group of algorithms called A* in the artificial intelligence world. One of the
inventors of A* was Nils Nilsson, a Professor emeritus of our very own Stanford CS department.
Add a button to run this heuristic and report on the difference in the numbers of paths considered
between A* and Dijkstra’s algorithm.

• Finding the graph center. The city works department is thinking about adding a new fire station and
need your help to find the appropriate central place. The goal is a position so that the shortest paths
from the fire station to other locations are relatively small. The eccentricity of a node N is the
maximum distance any other node is from N (i.e., consider all of the shortest paths between N and
each of the other nodes, the longest of those is N’s eccentricity). A node is at the center of the graph
if its eccentricity is the smallest of all nodes (all nodes that tie for smallest are jointly considered the
center). Add a feature to your program to find the graph center, which is the set of all nodes tied for
the minimum eccentricity.

• Max clique. A graph clique is a subset of the graph nodes where every pair of nodes in the subset is
directly connected. As in high school, it is a tight-knit cluster of friends that all know each other and
ignore those outside their circle. Given the graph on the left below, the diagram on the right shows
the maximal clique (the largest subset of the graph nodes that form a clique).

Identifying clusters of related objects often reduces to finding large cliques in graphs. For example,
a program recently developed by the IRS to detect organized tax fraud looks for groups of phony tax

- 12 -

returns submitted in the hopes of getting undeserved refunds. The IRS constructs a graph where
each tax form is a node and connects arcs between any two forms that appear suspiciously similar.
A large clique in this graph points to fraud. Finding the truly maximal clique is known to require an
exhaustive and time-consuming search, although there are good approximation algorithms that can
find large cliques fairly efficiently. Add a feature to your program to find the maximal (or large)
clique within the graph.

Deliverables

There is no interactive grading for this final assignment; all you have to do is submit your assignment
in the normal way through paperless. The submission should include the four source files you’ve
written or modified: pathfinder.cpp, graphtypes.h, path.h, and path.cpp. To save space on the
submission area, you should not include the images we supplied.

Remember that we will not accept any late submissions for this assignment.

- 13 -

